
Advanced Analysis

UML - More than a graphical notation
Qualified Associations and Association

classes

Why we need more than
diagrams?

Graphical notations
Advantage: good for displaying structural
aspects of the system
Disadvantage: can quickly become very complex

Solution: supplement graphical notations
with textual annotations

Extending UML (1)

Stereotypes
Introduce a variation on modelling element
semantics
<<name>> or iconic
Some stereotypes are pre-defined in UML
Profile: a purposeful set of stereotypes to address
a design modelling issue

Extending UML (2)

“Icon” stereotype “label” stereotype No stereotype

Where else have you seen stereotypes?

More Expressive Diagrams (1)

Constraints to modelling elements
{text}
It is important to keep a balance on the amount
of textual information attached to diagrams

Constraints and Stereotypes
Different, but some semantic variations may be
constraints

More Expressive Diagrams (2)

Telemarketing
All tickets are
numbered. The numbers
are unique across all
tickets in a campaign

CampaignTicket
ticket_number : S tring
ticket_value : Currency
ticket_s tatus : S tring

Campaign
<<PK>> campaign_code : S tring
campaign_title : S tring
date_s tart : Date
date_clos e : Date
date_drawn : Date
num_tickets : Integer
/ num_tickets _s old : Integer

computeTickets Sold() : Integer
computeTickets Left() : Integer
computeDuration() : Integer
computeDays Left(today : Date) : Integer

**

{each ticket_number is only unique
within its containing campaign}

More Expressive Diagrams (3)

Contact Management
The system does not handle scheduling of events by employees to
themselves. This means that an employee who created an event must not be
the same as the employee who is due to perform that event.

Event
description : String
created_dt : Date
due_dt : Date
completed_dt : Date
priority : Byte

Employee
<<PK>> employee_id : String
family_name : String
first_name : String
middle_name : String

10..* 10..*

created

10. .* 10. .*

due

0..10. .* 0..10. .*

c ompleted

{E mployee.created !=
Employee.due}

More Expressive Diagrams (4)

Object Constraint Language (OCL)
OCL expression elements

Context – on which modelling elements the constraint
applies
Navigation expressions – referring to other modelling
elements that may be relevant to the constraint being
defined
Assertions – assertions about the relationships
between the referred modelling elements

More Expressive Diagrams (5)

SavingsAccount

self.balance>0 and self.balance <250000

balance is an attribute of class SavingsAccount

Context – class or method

self refers to the current concept
Navigation expression

More Expressive Diagrams (6)

Navigation expressions
Links

Keep in mind that ambiguity is not acceptable

Department

self.staff

Role name at the opposite
side of the association

The set of objects currently linked
to the object through the specified
link – the employees currently
working for the department

Company

self.department

Instead of a role name the name
of the class on the other side

More Expressive Diagrams (7)

Collections
Multiplicity constraints denote the number of retrieved
objects

Iterated traversal

Person
self.department

Person
self.manager

0 or 1 personsJust 1 department

Company
self.department.staff

More Expressive Diagrams (8)

Object and Collections
Operations on objects

Types in OCL: basic types (boolean, integer, real,
string) and model types (classes in the UML model)
Model types have attributes and operations

Person
self.age()
self.contract.grade.salary

More Expressive Diagrams (9)

Different types of collection
Set: a single occurrence of each object
Bag: multiple occurrences of the same object

When more than one association with multiplicity greater than
one is accessed then the returned collection is a bag

Department
self.staff.contract.grade

More Expressive Diagrams (10)

Operations on collections
Department
staff.contract.grade.salary->sum()

Department
staff.contract.grade->asSet()->size

Company
employee->select(p:Person | p.contract.grade.salary>50000)

Company
employee->select(contract.grade.salary>50000).manager

Department
staff->collect(p:Person | p.age())

More Expressive Diagrams (11)

OCL Constraints
Person
self.employer=self.department.company

Company
employee->select(age()<18)->isEmpty
employee->select(age()<18)->size=0

Person
employer.grade->include(contract.grade)

Department
company.employee->includesAll(staff)

More Expressive Diagrams (12)

Company
self.grade->forAll(g | not g.contract->isEmpty())

Person
self.age()>50 implies self.contract.grade.salary>25000

Department
staff->exists(e | e.manger->isEmpty())

Grade
Grade.allInstances->forAll(g | g.salary > 20000)
salary > 20000

Grade
Grade.allInstances->forAll(g: Grade |

g <> self implies g.salary <> self.salary

More Expressive Diagrams (13)

Stereotyped OCL constraints
Class invariants

Properties of the class that are intended to be at all
times for all instances of the class

Usually for constraints that restrict possible values of attributes

Preconditions and postconditions
Precondition: something that must be true just before
an operation is called
Postcondition: something that must be true just after
the operation has completed

More Expressive Diagrams (14)

A precondition is usually expressed as a constraint
relating the attributes of a class instance and the actual
parameters of the operation being specified
A postcondition typically specify the effect of an
operation by comparing the attribute values before and
after the execution of the operation

SavingsAccount
balance > 0 and balance < 250000

SavingsAccount::withdraw(amt)
pre: amt < balance
post: balance = balance@pre - amt

More Expressive Diagrams (15)

Design by contract
B. Meyer – Eiffel language

Caller guarantees precondition
Callee guarantees postcondition
If both sides of the contract are satisfied then invariant
holds

Stresses class encapsulation
Defensive programming: always check the
preconditions

More Expressive Diagrams (16)

Aspects of a contract
The intent or purpose of the operation
The operation signature including return type
An appropriate description of the logic
Other operation called, whether in the same object or other
objects
Events transmitted to other objects
Attributes set during the operation’s execution
The response to exceptions
Any non-functional requirements

More Expressive Diagrams (17)

Notes and Tags
Notes: any kind of comment or constraint
attached to a modelling element
Tags: name value pairs of arbitrary information
or constraints
{tag = value}

A typical use of tags is in providing project
management information

More Expressive Diagrams (18)

Contact Management
An employee who created a task must also create
– in the same transaction – the first event for that
task
Show on the diagram that the analyst is Les and
the diagram is in its second iteration

More Expressive Diagrams (19)

{Employee.c reated !=
Employee.due} Employee

<<PK>> employee_id : String
family_name : String
firs t_name : String
middle_name : String

<<constraint>>

Employee who created a task must
also create - in a single transaction
- the first event for that task.

Task
description : String
created_dt : Date
value : Currency

1..1

0..*

1..1

0..*

Event
description : String
created_dt : Date
due_dt : Date
completed_dt : Date
priority : Byte

10..* 10..*

created

10..* 10..*

due

0. .10 ..* 0. .10 ..*

com pleted

1..*

1. .1

1..*

1. .1

{author = Les,
sta tus = 2nd ite ra tion}

More Expressive Diagrams (20)

SavingsAccount
balance > 0 and balance < 250000

SavingsAccount::withdraw(amt)
pre: amt < balance
post: balance = balance@pre - amt

Derived Information (1)

Derived information can be computed from
other model elements! – constraint

Applies on attributes and associations
In design may indicate optimisations
(/) in front of the derived attribute or association
name

Derived Information (2)

Telemarketing
The number of sold tickets
computed by the operation

computeTicketsSold()

Follows the aggregation
links, checks the status of
each ticket and if it is sold
adds it to the count

Campaign
<<PK>> campaign_code : S tring
campaign_title : S tring
date_s tart : Date
date_clos e : Date
date_drawn : Date
num_tickets : Integer
/ num_tickets _s old : Integer

computeTickets Sold() : Integer
computeTickets Left() : Integer
computeDuration() : Integer
computeDays Left(today : Date) : Integer

CampaignTicket
ticket_number : S tring
ticket_value : Currency
ticket_s tatus : S tring

{each ticket_number is only unique
within its containing campaign}

**

Derived Information (2)

Order
order_number : String
order_date : Date
ship_address : String
order_total : Currency
order_status : String
salesperson_name : String

Customer
customer_name : String
customer_address : String
phone_number : String
email_address : String

0..*

1..1

0..*

1..1
Invoice

invoice_number : String
invoice_date : Date
invoice_total : Currency

1..1

0..1

1..1

0..1

0..*

1..11..1

/CustInv

The Invoice is associated with exactly
one Order and the Order is associated
with exactly one Customer

Qualified Associations (1)

An association with an attributed compartment
(qualifier)
Attributes serve as an index key for traversing the
association

Key: qualified object + qualifier value
Traversal (forward or reverse) and multiplicities

Flight
flight_number : String

Passenger0..1seat_number : St ring
departure : Date 1..*

0..1seat_number : St ring
departure : Date 1..*

Qualified Associations (2)

A single order item per
computer on order
A computer is ordered
after being configured by
the client
(order_number +
configuration_id)
links to a single computer

Order
order_number : String
order_date : Date
ship_address : String
order_total : Currency
order_status : String
salesperson_name : String

Computer
computer_name : String

getConf()

0..*

11

configuration_id : Integer

0..*

configuration_id : Integer

Qualified Associations (3)

OCL
Traversing qualified associations

Using association classes

Person
self.employee

Company
self.employee[314159].manager

Grade
self.contract.employee

Person
self.contract.grade

Association Classes (1)

Employee database
Each employee in an organisation is assigned a unique
emp_id. The name of the employee is maintained and
consists of the last name, first name and middle initial.
Each employee is employed at a certain salary level.
There is a salary range for each level, i.e. the minimum
and maximum salary. The salary ranges for a level never
change. If there is a need to change the minimum or
maximum salary, a new salary level is created. The start
and end dates, for each salary level, are also kept.

Association Classes (2)

EmpName
lname : String
fname : String
mi : String

SalaryHistoryAssociation
start_date : Date
end_date : Date
salary : Currency

Employee
<<PK>> emp_id : String

SalaryLevel
<<PK>> level_id : String
min_salary : Currency
max_salary : Currency
start_date : Date
end_date : Date

*

*

*

*

There can only be one instance
of SHA for each pair of linked
instances of E and SL

Association Classes (3)

Employee database – additional requirement
Previous salaries of each employee are kept,
including start date and finish date at each level.
Any changes of the employee’s salary within the
same level are also recorded.

Association Classes (4)

EmpName
lname : String
fname : String
mi : String

SalaryHistoryAssociation
start_date : Date
end_date : Date
salary : Currency

Employee
<<PK>> emp_id : String

SalaryLevel
<<PK>> level_id : String
min_salary : Currency
max_salary : Currency
start_date : Date
end_date : Date

*

*

*

*

The constraint does not hold!
Reify the association class

Association Classes (5)

EmpName
lname : String
fname : String
mi : String

Employee
<<PK>> emp_id : String

SalaryHistoryReified
seq_num : Integer
start_date : Date
end_date : Date
salary : Currency**

SalaryLevel
<<PK>> level_id : String
min_salary : Currency
max_salary : Currency
start_date : Date
end_date : Date

*

1..1

*

1..1

